DASYUROTAENIA ROBUSTA BEDDARD, 1912, AND D. DASYURI SP. NOY.. FROM CARNIVOROUS AUSTRALIAN MARSUPIAI.S

by IAN BEvERIDGE*

Abstract

Summary Bevekipoe, 1, (1984) Dasyuroluenia rebousta Beddard, 1912, and D, desvan sp. nov. from cammomses Australlan marsupals. Truns. R. Soc, S. AdASh, $\mathbf{1 0 8}(4), 185-195,13$ December, 1984,

Dasvurolaenia robasta Beddard, 1912, is redescribed trom specimens collected from the eypr binst. the Tasmanian devil, Sarcophilhs harrisi (Boitard). The postellar hooks are deseribed for the firstzinse. differs trom 1). robusta in the size and shape of the rostelfar hooks, the presence of iransverse osmorezulators canals and the number of oterine branches. Speciusens from Dusyurus maculatios, desentoed in eather works as. D. Tohusta cannot now be assigned to either apecies with certainty. Icsions associated with D. dirsuri spenove are deseribed and the taxemomie mosition of the gente diveusied.

Kir Wornes; Cestoda, Tacnidac, matsuptals, Dosyurotuenia.

Introduction

Dasyumotaentu robusta was lirst described by Beddard (1912) from speciments found in a Tasmantan devil, Sarcophiles thatrish (Boitard) (Dasyurus ursimus) which died in Iondon at the Gardens of the Zoological Society. Beddard (1912) deseribed a number of unumal morphologieal features including suckers armed with hooks, and placed the species, with some reservations, in the Taenioidea. Baer (1925) re-examined Beddard's rypes and indicated that a number of misinterpretations of the morphology of the cestode had heen mader including the "armed suckers" which proved to be an armed rostellum. Baer (1925) concluded that the species belonged to an independen genus within the Taenioidea, while Wardle \& Melead (1952), with considerable reservation, placed the genus within the family Taeniidae

Subsequenty, Sandars (1957) redeseribed the species based on cestodes collected from lwo Daspurus maculatus (Kerl) from Tasmania, contioming most of Baer's (1925) observations and concluding that the genus did belong within the Taeniidac. This taxonomic position was accepted by Yamaguti (1959), but if has been questioned by Rausch (1981) on phylogenctic grounds.

Recent collections of cestodes from dasyurids indicate that iwo independent specties of Dasyurotaenia have been formerly confused inder a single spectif name, largely because the rostellar hooks of the species have never described (Beddard 1912, 1915; Baet 1925; Sandars 1957). In addition, a reexamination of the morphology of the two species supports Rausch's contention (1981) that this genus

[^0]may not belong to the laetifidae. Lt this waper, Dasyurotaenia mobnvo is redescribed from Sor cophilus harrisii, the sype host, and a ben speceex is deseribed from Dasyurzs mactutum

Materials and Methods

Cestodes were relased in waler; fixed in 10% neural buflered formol saline, and sared in 700_{n} ethand. Whole mounts were stained with Celestine blue, dehydrated in graded ethanots, cleared it stove oil and mounted in balsam. Scoleces were moumed in Berlese's fluid, and digital pressure was appliced to the cover slip to enable examimation of the rosteflar hooks. Serial sections cut at a thickness of 5 m , were sained with haematoxylin and eusin. Giavid proglonides of D. dasyuri whith had heen fixed in formalin were diced into small cubes, posttixed in osmium teroxide and embedded fit aratdite. Thin sections were statned with lead circale and uranyl acetate and viewed with a loel 1000 CX elecIron mieroscope Additional specimers of Dessymptaenia were obtained front preserved carcasses of Dasyurtus macnlotus held in the National Museums of Victrrin. Melhourte

Mewsurements are given in the text, in mom, is the range followed, in parenitieses, by the mean and the number of measurenuents made.

Abbreviations of imstitutions cited in text: AHC - Austratint Helminth Collection, housed in the South Australian Museum, Adelade, BMNHBritish Muscum (Natural History), London. MHNGi-Muséumi d'Histoire Nalurelle, Gieneva. SAM-South Austratian Musearm, Adelaide. WAM - Western Australian Museunt Perth. WI Comomonweatio Scientificand Judustial Researels Organisation, Division of Wildlifo and Rargelands Reacurcho, Canberra.

Dasturotaenia robusta Beddard, 1912 FIGS 1-11, 26-28

Descriphion: Cestodes of moderate size, up to 140 in length, 4 wide with up to 290 proglotides in gravid strobila. Scolex large (Fig. 1), $2.36(\mathrm{n}=1) \mathrm{in}$ diameter, decply embedded in intestinal mucosa of host. Suekers $0.30-0.38(0.33, \mathrm{n}=3$) in diameter; rostellum $0.44 \times 0.15(n=1)$ retracted within scolex, extremely muscular, sucker shaped, with $42(n=1)$ rostellar hooks arranged in 2 rows. Large or anterior rostcllar hooks (Figs 2-4, 26) 0.046-0.058 (0.054, $\mathrm{n}=10$) long, base $0.056-0.062(0.059, \mathrm{n}=10)$ long; blade large, core striated, sometimes vacuolated; handle extremely short, relatively wide; guard long, wide, single lobe (Figs 4, 27). Small or posterior rostellar hooks (Figs 5-7) 0.042-0.052 (0.047, $\mathrm{n}=10$) long, base $0.044-0.060(0.054, n=10)$ long; blade large, corc striated; handle extremely short, knoblike; guard large, llattened, almost bilobed distally (Figs 7, 28). Neek present.
Mlusculature of mature proglottides poorly developed. Outer longitudinal museles single or in very small bundles; inner longitudinal muscles in larger bundles containing 20 or more fibres. Transverse muscles ius several bands; including bands internal to inner longitudinal museles and scparating inner and outer longitudinal muscles; more poorly defined bands between bundles of inner longitudinal muscles. Dorso-ventral muscles sparse, crossing cortex and medulla at irregular intervals. Longitudinal osmorcgulatory canals paired; ventral canal $0.10-0.19(0.13, \mathrm{n}=5)$ wide in mature proglottides, not joined by transverse eanals, with valve-like flaps protruding into lumen at junction of proglottides; in one strobila, ventral canals of gravid proglottides with several smaller projections of canal wall in addition to major valves. Dorsal canal extremely narrow, sinuous, $0.05(\mathrm{n}=1)$ in diameter in mature proglottides, dorsal or external to ventral canal. Nature proglottides 0.35-0.60 $(0.48, n=5) \times 2.45-3.05(2.77, n=5)$, length:width ratio 4.8-7.1 (6.0, $n=5$) (Fig. 8). Gravid proglottides $1.45-2.20(1.75, n=5) \times 2.60-3.50(3.18, n=5)$, length:width ratio $1.2-2.3(1.9, \mathrm{n}=5)$. Genital pores almost exclusively unilateral, oceasional genital pore on alternate side. Genital atrium narrow, situated in middle of lateral proglottis margin in mature proglottides dividing margin in ratio of 1:0.67-1:1.00 ($1: 0.88, \mathrm{n}=5$); in middle or posterior half of margin of gravid proglottides, dividing margin in ratio of 1:1.00-1:1.66 ($1: 1.35, \mathrm{n}=5$). Genital ducts pass between longitudinal osmoregulatory canals. Cirrus
sae elongate, thin-walled, invariably extending beyond osmoregulatory canals into medulla, $0.60-0.85(0.74, \mathrm{n}=10) \times 0.06-0.09(0.07, \mathrm{n}=10)$ in mature proglottides. Cirrus slender, approximately 0.01 in diameter, coild, armature of extremely fine bristles visible on mid-region of cirri in section. Internal and external seminal vesieles absent. Vas deferens greatly coiled, narrow duct, loops medially, then at midline turns posteriorly, terminating between lobes of ovary. Vasa efferentia not seen. Testes numerous, situated in 1-2 layers in dorsal plane. Testes occupy most of medulla between osmoregulatory eanals, occasionally extend over osmoregulatory canals on poral side of proglottis with small numbers of testes being outside canals (Fig. 8); testes confluent anterior to ovaries and frequently confluent posterior to vitellarium in 1 or 2 rows; row of testes posterior to vitellarium sometimes interrupted; always some testes posterior to vitellarium; small numbers of testes overlic ovaries. Testes number $170-223(200, n=10)$ per proglottis; diameter $0.05-0.10(0.08, n=10)$. Vagina $0.010-0.020(0.015, \mathrm{n}=5)$ in diameter, straight, lined internally by hairs or bristles, surrounded by single layer ol glandular cells. Proximal of 0.16 of vagina of wider internal diameter, unarmed. Seminal receptacle small, 0.06-0.08 $(0.07, \mathrm{n}=5) \times$ $0.02-0.04(0.03, \mathrm{n}=5)$, situated in mid-line between lobes of ovary (Fig. 10). Ovary bilobed, poral lobe smaller, $0.14-0.32(0.21, \mathrm{n}=10) \times 0.21-0.40(0.29$, $\mathrm{n}=10$), aporal lobe $0.16-0.30(0.23, \mathrm{n}=10) \times$ $0.27-0.48(0.38, n=10)$, joined by narrow isthmus. Vitellarium posterior to ovary, elongate laterally $0.07-0.14(0.11, \mathrm{n}=10) \times 0.47-0.90(0.70, \mathrm{n}=10)$. Mehlis' gland spherical, 0.08-0.10 (0.09, $n=5)$, in diameter, between vitellarium and seminal reeeptacle. Uterus arises as tubular structure in midline. Uterus in gravid proglotides with 6-9 (7, $\mathrm{n}=10$) poral and $7-10(9, n=10)$ aporal lateral uterine branches; uterine branches frequently subdivided laterally (Fig. 11). Eggs approximatcly spheroidal $0.033-0.048(0.042, \mathrm{n}=10) \times 0.035-0.040(0.038$. $\mathrm{n}=10$)(Fig. 9); embryophore thick, homogenous. non-striated, oncosphere $0.028-0.033(0.030, n=10)$ $\times 0.023-0.030(0.027, \mathrm{n}=10)$; oncospheral hooks $0.008-0.010(0.009, \mathrm{n}=10)$.

Development of genital organs in single specimen 140 long: testes first visible in proglottis 95; first inature proglottis approx. 160 ; uterine filling commences in proglottis 190; male and female genitalia involuted by proglottis 230 ; fully branched uterns

[^1]
\qquad 10

present by proglotis 250; first gravid proglottis 278; total number proglotides 290 ,
llose:- Sarcophilus harrisii (Boitard, 1841) (Marsupialia: Dasyuridae).
Sife in hose Sma! intestine.
Tpes: Collected: Iondon Zoologieal Society Gardens; slides of serial sections MHNG 24/53-61.
Macrial cxamined types; 3 secomens. Adetate Zocloted Gardens, $7,0.1940$, collected by M. G. reallantem. A4C 824 and 51384 : I specimen (without sentex). Chicate 7 oological (irders, collected by V. Romlat. BMNH.196T 9.28.23.

Dasyurotaenia dasyuri 5 n-nov.
 FIGS 12-23, 24, 25. 29-31

Descripion (from types): Large cestades, 237-506 ($400, n=5$) m Jengll $2.5-3.9(2.8, n=5)$ wide, winh 280-330 (310) proglotides in gravid stoobzate. Scolex lares, $2.40(\mathrm{n}=1)$ in diameter. deeply embedded in mucosa of hezt. Suckers $0.32-0.38(0.35, n-9)$ in diameter, rostellain 0.38-0.50 $(0.43, n=4)$ in diameter avith $36-38$ ($n=4$) rostellat hooks arranged in two rows (Fig. 12) Large or anterior rostellar hooks $0.105-0.110(0.107, n-20)$ long, base $0.077-0.093(0.085, \mathrm{u}=20)$ long (Figs 13. 14, 24): blade latge, core frequently vacuolated; handle extremely small; guard clongate, not enlarged towards extremity (Fges 15,25). Small or posterior rostediar hooks $0.080-0.093 \quad(0.087, \mathrm{n}=20)$ long, base $0.060-0.083(0.075,11=20)$ long (Figs 17,24$)$; blade large, core frequently vacuolated; hande virtually absent, guard large, broad, frequenlly bilobed distally (Figes 18, 25) Nech present. Musenlature nor strongly developed. Outer longitudinal museles single of in sulall bundles of 2-5 fibres, inner longitudimal museles in larger bundles, up to 0,025 in diameter, containine 20 or more fibres. Tankeverse nuseles in several bands; two mose prominent bands immediately internal to inner longitudinal thascles and separating inner and outer longitudinal musclet; poorly defined bands between bundles of inner longitudinal muscles. Dono-ventral musclen sparse, single, crossing cortex and medulla at itreculat intervals. Longitudinal osmoregulatory cansis paired; ventral tanals 0.11-0.17 (0.15, II-5) in diameter in mature proglotides, jomed at pasternat margin of each progkotis by boad Iranswerse cathal. Ventral canals with valve like flaps protruding intolymen al junction or proglothdes. Dossal canal ex(remely narron, sinuous, 0.0) ((m 5) in diameter in mat ure proglotickes. Mature proglon-
udes $1.4-2.5(1.7, n=10) \times 2.5-3.0(2.9,11=10)$, length:width ratio $1,02-2.64(1,84, \pi-10)(5+2,20)$. Gravid progloulides $1.8-3.4\{2,7, n=10\} \times 1.9-3.3$ (2.8. n -10), length:widit ralio 0.71-1.53 (1.07 $\mathrm{n}=10$). Genital pores mainly unilateral, oceamonally adernate irregularly. Genital atrium shallow, situated in anterior half of lateral poghotis magin in mature proglotrides, dividing margin in ratio 1:1.5-1.2.4 (1:1.8, $n=10$) it middle of matgin in graval proglortides, dividine margon in fano 1:0.9-1:1.5 (1:1.1. $\mathrm{n}-10$). Genibal ducts pass betwect longitudinal osmoregulatory canals. Cirras sale clongate, thin-walled (Fig. 19) invariably extending beyond osmoregulatory canals into medulla, $0.50-0.71(0.57, \mathrm{n}=10)<0.08-0.12(0), 10, \mathrm{n}=10)$ in maiture proglottides. Girrusstender, 0,01-0,02 40,015 , $\mathrm{n}=5$) in diameter, eoited, armature of fine hairs visible on dissal region of some puri wider high magnifiedion, Internal and external semimal vesictes absent. Vas deferens grearly ebiled, narow duct loops medially and anteriorly; then at midline turns postetiorly, terminating near seminal receptacte Vasa efferentia not seer. Testes numerous, situated it 1-2 dayers in dorsal planes. Testes decupy most of Thedullat betweet osmoregulatory eanals, excepl ateat of fensale genitalia; testes confluent antcrior to vas defcems: testes usually gonfluent posterior to vitellantum, of with 1-3 testes posterior $t o$ and overlyims vitellarium; occasionally no testes; postetion to vitellatium. Testes mumber $150-160(15=2)$ per proglotis; diameter $0.06-0,08(0.07, \mathrm{n}=10)$, vaeina anproximalely 0,12 in chameler, straigisl, lined inter rally by fine hairs, surnounded exrernally by single layer at glatidular cells. Prosintal 0.15 of sagina niarTow, surrounded by thicker musele layer than renatinder of yagina, lackine efanduar cell investment. Seminal receplate ovoid ($1 \mathrm{ig}, 21$), 0.11-0.16 $(0) 14, n-10)=0.07-0.10(0.9, n=10)$ when filled. situated in mid-line between lobes of owary, Ovars bilobed, poral tobe small, $0,26-19,39(0,31,12=10)$ < 0.12-0.25 (0.20, n二10), aporai lobe 0.32-0.44 $(0.37-n=10)$ 各 $0.15-0.30(0.21, n=10)$, joined by marrow isthmus. Vilellarium posterior io ovarss reniform ().12-0.24 (0.20, $n=10) \times 0.18-0.31(0.23$, $\mathrm{n}=109$. Mehlis' gland spherical, $0.07-0.11$ (0.09. $n=107$ in diameter, between viteltarian aud semmnal receptacle. Uterus arises us tubular strueture in midline. Literis in grovid proghotides (Fig 23) with $6-17(12,1)=10)$ poral anded $10-20(55,1)=10)$ aporal lateral ulerine branches: berine branche lrecueally subderded laterally. Egy approwimately aptheroidal

[^2]

Figs 24-25. Rostellar hooks of Dasyurotaenia dasyuri, sp.nov; 24, apical view of rostellum, hooks in lateral view; 25 , apical view of hooks showing differences in shape of guards of large and small hooks (arrowed). Scale lines 0.01 mm .

Figs 26-28. Rostellar hooks of Dasyurotaenia robusta Beddard; 26, large rostellar hooks, lateral view; 27, 28, apical view of hooks showing difference in shape of guard of large and small hooks (arrowed). Scale line 0.01 mm .

Figs 29-31. Histological features of scolex of Dasyurotaenia dasyuri sp.nov. and associated pathology; 29, sagittal section through scolex showing partly withdrawn rostellum; 30 scolex(s) lodged in muscularis externa immediately helow mucosa (m); 31, scolex(s) lodged in muscularis close to serosal margin showing dome shaped projections of tissues (d) beyond normal scrosal surface intestine and mucosa (m). Scale lines 1 mm .
(F1g. 22), 0.035-0.040 (0.038, $\mathrm{n}-10) \times 0.030-0.034$ (0.032, n $=10$) : embryophore thick, homogenous. non-3triated, onteosphere $0.022-0.025(0.024, \mathrm{n}=10)$ $\times 0.016-0.018 \quad(0.017, \mathrm{n}=10)$; oncospheral hooks $0.008-0.010(0.008, \mathrm{n}=10)$. Developmen(of gemial organs in 5 specinums: anlage first visible in proglotudes $60-120(85)$; tsetes lirst visuble in proglorfides $180 \quad 190$ (187); lifs mature proghottis approximately 205-220 (215); Leibe filling commeness in proglotites 225-265 (245); Pirsl gravid proglotit) 270 320 (305); ratal proglormides $280-330$ (310).

Variatorz Specimens from las;identical wo types. except in the following minor Fealures: rosteilar hook number mome sarbable that in ryper, $32-40$ $(37, n=3)$; latee rostellat hooks, 0.110-0.120 (0.116. $0-109$, and small rostellar hooks $0093-0098$ $(0.095, \quad 1=10)$ both slightly larger (approximately 0,010) than hooks of type specimens; testes numbor $169-226(186, n-10)$ por proglotis, higher than in types; vitellarium $0.10-0.15(0.13, n=10)=0.21-0.38$ (0.30, $n=10)$ relatively wider and shorter than in types
Host: Dasparas macalalas (ketr. 1792) (Marsupialia: Dasyuridae).
Site in hosk: Small infermes
Trpes: Hololype, 8 paralyper, Mr Windker Tableland, Old. $16^{\prime \prime} 12^{\prime} \mathrm{S}, 145^{\prime \prime} 05^{\prime} \mathrm{F}, 17$ vii 1982 coll. D. M. Sprath Holotype, 2 stides SAM V 3459,3 paratypes, SAM V $3460-\sqrt{3} 3462 ; 4$ paratypes, $A H C$ S2169-S2172. HC 12322; I paratype. BMNH 1983. 6,13, 1-2; I scolex, strobilar tragmenls, paratypes. in collecionn of R. I. Rausch.

Tine siructure of the ege ervelopes (F-|g. 32). The following envelopes were recognised surrombling the ancosphere The outer envelope of the ege is bounded by a thin viedbue metnbtanc, enclasing an irfegular sytoplasmic layer. The outer

Fis, 32. Transmission elecirom michograph of $v \mathrm{ge}$
 e-embryophore; e-granular layer: ie-inner emBy yophorie membenes oe-outer enbryophoric membrame: vi-vacuolated layer; vm-vitelline membrane.
embryophoric membrane lies immediately external to the thickened embryoptore. The embryophore is of uniform theknes, and is composed of relativeIy homogeneous electron dense marena! which is not organtied into regular embryophoric blocks and is without lacunae or internal circular bodies. Some areas wilhin the embryoptore are less electron dense and suggest cavities between bloeks but are not arranged in a regular lashion. A zone of electron dense gramules, the granular laver, lies between the embryaphore and a broad sub-embryophoric vacuolated area which may represent ageregations of lipad bodies. The vacuolated rone and gratular raver is bounded internally by the intier embryophoric membrane. Imerna! to this lies the oncospliere tounded by the oncosphetal membrane:

Materval examoned; Ohd: typer; Thas. 3 specimens, Smithrou. coll. B. L. Mimalay, 1vii.1979; 3 specimens, Smithton, coll. D. M Sprall, 26.iii.1968, WI C282, C43: 2 pecomets, 1 ifdate coll. B. L Munday, 2 vii. 1976. AHS, HC10732; Trauments of specimem, Mynard, coll. unknowh. 22Ni.1922, whole pieserved carcass NMV C630t sestodes AHC 9785.

Assuztuled Lentons (Figs 29-31); Scoleces of D. dosyzri lie deeply embedded in the exterual muscle layers of the wall of the small intestine of the host, either superficially, that is immediately below the submucosa, or, elose to the serosat mangin of the museulature such that the position of the cestode scolex is indicated by a raised dome-shaped projecfion on the serosal surface. The neek and anterion region of the strobila lie in a narrow tumel which opers into the intestoal lumen. Two specimens of D. dusyurt were embedded singly, two wers enibedded together, and a further three worms were embedded at a single site. The superficial layers lining the cavitios induced by cestode invasion consist primarily of netrotic cells and of cell debris together with viable eells compressed by the distenfion of surrounding tissues. There are an addition, surcounding the sooleces, a few sma!l localised areas of aecrosi of the myocytes and inliletations by inflammatory cells. The principal host reaction is a chronic in lammatery one with an infiltration of macrophages and lymphoctyes and a few plasma cells into tissues sumounding the cestade. Polymorphonteleat leukoeytes are umbommon, but Langhans-type giant cells are oceasonally present in the edges of lestons. Fibroblasts are prominent in a kew areas on the outer edeges of infiltraled areits.

Discussion

In none of the previous descripions of Dasvomotuma by Beddard (1912, 1915), Baer (1925) or Sandars (1957) have the rostellar books heen adequately described. Beddard (1912) provided drawings of the
histology of a purported sucker of D. robusta showing sections of sclerotized hooks but did not describe the size or shape of the hooks. Baer (1925) had no scoleces to examine, but concluded from Beddard's description that the cestode in question possessed a rostellum armed with taeniid-like hooks. Sandar's specimens (1957), here attributed to another species, were without rostellar hooks, but were re-described under the name D. robusta. She estimated that some 96 hooks were normally present.

The material described above indicates that in the past two (or more) independent species have been confused under the single name D. robusta. The two species described in this paper differ markedly in the size and shape of the rostellar hooks, but have few differences of note in strobilar morphology, and this has undoubtedly led to the confusion.
D. rohusta is known only from the type series colleeted from Tasmanian devils in the London Zoological Gardens, from the three specimens described here, collected from the same host species in the Adelaide Zoological Gardens and from a single specimen without scolex from the Chicago Zoo. Beddard (1915) reported the species in four of nine devils dying in the Gardens; however, examination of 294 devils in Tasmania has not revealed its existence (Gregory ef ul. 1974).

The present redescription, although based upon a very limited series of specimens is considered justified as the species may now be rare, and since the material available allows a fairly full description to be made for the first time, including the distinguishing features of the rostellar hooks.
D. robusta is distinguished from D. dasymi by the form and size of the rostellar hooks (Figs 2-7. 13-18). The large rostellar hooks of D. robusfa are only 0.046-0.058 long compared with 0.105-0.120 in D. dasyuri. In addition, the size of the hook blade is relatively smaller in D. robusta so that the length of the hook base is larger, on average, than the total length of the hook; in D. dasyuri the length of the base is less than the total hook length. In both species, the guard of the small hook is particularly broad, and this is more marked in D. robusta than in D. dasyuri.

The principal strobilar character distinguisting D. robusta from D. dasyuri is the transverse osmoregulatory canal joining the ventral cantals on both sides of the strobila in each proglotis. The difference is not immediately obvious in mature proglottides, but the canals are readily visible in most gravid and neat gravid proglottides and the presence or absence of transverse osmoregulatory canals can be readily ascertained. Beddard (1912) noted the lack of transverse canals in the type specimens of
D. robusta, and Baer (1925) confirmed that the canals were not visible in Beddard's sections, but suggested that their absence might be more apparent than real owing to the severely contracted nature of the type specimens. The new material confirms Beddard's (1912) observations that transverse canals do not exist.

Beddard (1912) discussed at some length the "membranes" stretching across the lumen of the osmoregulatory canals, noting that the lumen was occluded by "membranes" once in each proglottis. Baer (1925) explained Beddard's observations in terms of oblique histological sections passing through consecutive coils of the osmoregulatory canal, suggesting that the "membranes" were essentially artefacts due to the state of contraction of the specimens. The new specimens indicate that Beddard's observations were correct. At the posterior end of the proglottis in D. robusta and D. dasyuri, the lumen ol the osmoregulatory canal is largely oceluded by a valve-like extension of the canal wall. The structure is in most respects identical to valves which oceur in comparable positions in the osmoregulatory canals of species of Taenia, described in detail by Kohler (1894). In specimens of D. robusta, the ventral canals are of extremely variable diameter, and in some incompletely relased proglottides, there are occasional folds in the canal wall similar to the incomplete "membranes" described by Beddard (1912). Baer (1925) was probably correct in ascribing these changes to the state of relaxation of the specimens.

The two species also dilfer in the number of lateral uterine branches, with $6-10(9)$ in D. robusta and 6-20 (14) in D. dasyuri. Although these differences appear to be consistent in the material examined, they should be treated with some caution since Verster (1967) in a rescription of Taenia solium Linnaeus, 1758 and T. saginata Goze. 1782, two species which have frequently been identified from gravid proglottides by difference in the number of uterine hranches, found that overlap in uterine branch number occurred if a sufficient number of proglottides was examined. Some overlap obviously oceurs in uterine branch numbers of Dasyurotaenio spp. and more extensive series of specimens are required to test the validity of uterine branel number as a taxonomic character in this genus.

A number ol minor morphological differences noted between D. robusta and D. daspuri require more detailed examination in larger numbers of specimens before their reliability can be estabtished. (i) The vitellarium was much shorter and wider in D. robusta (Figs 10, 20); however, this may have been due to the incomplete state of relaxation of the specimens of D. robusta. In addition, there was variation in the dimensions of the vitellarium be-
tween specimens of D d dasyuri from Tas. and Qid the laller specimens (the typer) having nuich iasrower vilellaria. (ii) In specimens of D. motusha. wsteh were occatmally found overlying the osmoregulatory canals or even entirely lateral to them. in contrast to D. dasyuri in which the testes invariably lie helween the camaks. (iii) The seminal reeeptack in D. robustu was smaller than D. duspuri and the cirrus sace slighty longer and atore prominent. All features mentioned require examination in an extensive series of specimens before any confidence can be placed upon their ability to distinguish the two specice.

The data presented above sugeest that D robuste is conlined to Sarcophitus harrisio and that \mathbb{Q}. dasyurt weeuss only in Dasyums macularus. Sandar's (1957) specimens deseribed under the name D. robusta but collected from Dosyurws macthatus Tn Tas cannot delinitety be assigned to elther species, siuce they had wo rastellar hooks. She staved that no transverse osmoregulatory canals could be seen, but prefaced her remarks by saying that details of the osimoregulatory canals could not be determined If would therefore be unwise to assume that het apecinens were D. robusia based on het tailuce to tind transverse osmoregulatory canals. Her figure (Fig. 271 of a gravid proglottis reveals 12-14 lateral uterine branches, sugecsting that the specimens she desoribed may have been in laot Q dasyuri and not D. rohusta. However, Dasyruournia is probably represened by several speeics in dasyurid inarsupials. In addition to the netw specties deseribed here a single juvenile cestode wilh 96 rostellat hooks, probably represeming yet anotiet species. was ca-parasitic with the type specimens of b Alosturi and has been deposited in AHC ($\$ 217 \%$). Sandarts (1957) specimens conald be allibibuled to this species or could bave been a mixture of two species, $Q_{\text {. dasyuri and the undescribed species. }}^{\text {d }}$ Another probably now species with 18-22 hooks. 0.100-0. 1088 and $0.092-0.104$ Tone Fmm Dasyurus -ulbopuntraus Schlegel, 1880, in New Guinea is represented by two specimens only in the collection of the BMNH (1973.7.9.5-6). More specimens are requred before the species can tre described adequately. Finally, Juvenile cestodes with 54 hooks (0.152 - 0.156 and 0.122 -0.126 long were present in it specimen of Satancllus hallucatus Gould, 18.42 form W.A. The specimens probably reptesent a how species of Dasmaramenta and have been deposited ifi W/AM (79, 80, 81-1983).

A metacestode of Das,yurotaenia, idenlified as D ? robusta was teported trom the peritoneal savity of Polomus tridactylus (Ken, 1792) in Tas. by Grepory (pers, commi. in Beveridge, 1978). This particular specimen had been identified by compartorer with
secteces from Lasyunesmacmams, and is mow comsidered to be a metacestode of D desvint.

The oceunence of the seater deeply embedded wishin the intestinal wall of the hiost is ummenal among essiodes. Puradilepis scolecinu (Rudolphi. 1819) hurrows ing the small imestise of cormaran Phalacrocorax cartho Linnaeas, the scolex lodeing in the musculatis exterma close to the serosid (Karsmad en al. 1982), and a simplar localisanion has betn reported for Paradilepis detachansi (tultulanin. 1909) in Phatacracorax afticanus (Simelin) by Bater (1959) In mammals, the anoplocephalid Ectonorephafoum abei Rausch \& Ohbayashif 1974, recuts with its seoles deeply buried in the wall of the saccultes rotundus of the pikas Octmonor moyer (Ogelby) and a. Macmoris (Gumber) (Rausch \& Ohbayashi, 1974) The mecharisims of invasion of Dusyuroraenia were not clear fronn stre material sundied. Dasymoraenia spp do not hate prominent rostellar glands to sectete proteolytic enzymes such as are presenl in L. abei. bur material from S. maculams (WL C43) does sue. gest that the juvenile cestodes of D. dasyuri hevome decely embedded in the small intestine wall before The inimation of proglonisalion. The hisfungeral reactum to the scolen of D. dasvurt is simitat to that described for P sealecing and E abeot.

The geame. Dosyurothentar was allocated to the Taerfiidae by Baer (1425) and this wats conttemed subsequently by Sandars (1957). Ransch (1981) however has emphasised that the fandy, iu the form recognised by Abuladse (1965) and Yanagui (1959) is obviously polyptiylethe. Cladotaenia Cohn, 1901 as indicated by Frecman (1973), helongs In the Dilepididae, based on the morphogenesis of the metacestodes, though the morphology of mature and gravid proglathides is similar to the taeniids. Anoptotaenia Beddard, 1911, a parimite of the Tasmanan Devil, likewise has a proglotis morphology akin to the Taleniddate whits metacestode developinent indicates affinities with the Linstowiidae (Beveridge 1982). In ascerlaining the irue relationship al genera wathu the 'laeniidae, it is obvious that a knowledge of meracestode development is a pre-requisite, and these dala currendy are lacking for Dusvirotwemu. As a consequeftec, merphological datia canuot be dee bass tol a final determination of its rexonomic pusition, hul may provide clues.

Dasyurorienia is distingaished from other gencra of the Taemidae (sensu Vamaguti 1959) by the larese scolex emhedded deeply in the fissuen of the hast and by the essencially unilateral genital pores. Sandurs (1957) mentioned the general body shape, the struture of the seetex, the form af the cartus sam and the development of the musculature as features distiongushing the gents. White the form of the zet
rus sae is markedly different from A. dasyuri, a coparasite of the Tasmanian devil, it does not dilfer from most Taenia spp. and therefore cannot be considered diagnostic. Of the eharaeters mentioned by Sandars (1958), only the arrangement of the musculature seems worthy of consideration as it is apparently unique in the family. Unfortunately, the museulature of many speeies of the Taeniidae has not been deseribed in detail, and its value as a tavonomie ehatacter for Dasyurotaenia is therefore open to some doubt at present.

The structure of the egg likewise is inconclusive. The embroyophore is extremely thick, as in taeniids, but is not composed of radially arranged blocks with laeunae (see Fairweather \& Threadgold 1981) nor is it eharacteristic of dilepidid eggs (Pence 1967). In A. dasyuri, the structure of the egg was interpreted as being typieally taeniid (Beveridge ef ab. 1975) yet the morphogenesis of the metacestode of this species indicates linstowiid affinities. Hence, there is some doubt as to the taxonomic signifieance of egg strueture, and little weight can be placed upon the presenee of a thick embryophore and insignificant outer envelope in the egg of D. dasyuri.

In D. robusta, the rostellum is apparently retractable, and can be retracted fully within the scolex. This eharacteristic, shown in Fig. 1, has been overlooked by previous writers, but it is not a eharaeteristic of Taenia or Echinococcus (see Wardle \& MeLeod 1952), the only two genera considered by Rausch (1981) as belonging to the Taeniidae. A retractable rostellum is a feature of the Dilepididae and Hymenolepididae (Wurdle \& McLeod 1952) and
may indicate an affinity with these groups rather than with the Taeniidae.

In sumnary, none of the morphologieal data provided allows the definitive allocation of Dasyurofaenia to a family. Superficially it resembles the Taeniidae, but the retractable rostellum of the type species, the museulature, and strueture of the egg. east doubt on such affinities.

Rausch (1981) suggested that Dasyurotaenia could not be alloeated to the Taeniidae on phylogenetic as well as morphological grounds, alluding to the evolution of the Dasyuridae in isolation from eutherian mammals, and the belief that the true taeniids have evolved exelusively within recent Carnivora. If this is the case, Dusyurotaenia may exhibit a strobilar morphology convergent with speeies of Taenia, yet be derived from alternative origins, either the Linstowiidae of dasyurid and peramelid marsupials (Beveridge et al. 1975, Beveridge 1982) or Diplepididac from accipitriform birds (Beveridge el al. 1975). Elueidation of the life eycle of the parasite will be required before a final answer can be given.

Acknowledgments

My sineere thanks are due to D. M. Spratt for providing most of the material described in this paper and for reading the manuscript, to R. Bray and C. Vaucher for lending material in their eare, to M. G. O'Callaghan and B. L. Munday for colleeting the material from Sarcophilus and Dasyurus respectively and to Dr R. L. Rausch for reading the manuseript. The electromierograph was taken by K. Smith.

Refierences

Amu vose, K. 1. (1964) Taeniana of animals and man and diseases caused by them. In Essentials of Ceslodology, Vol. 4. Ed. K. I. Skrjabin. Akademia Nauk SSSR. (English translation, Israd Program for Scieniflic Translations, Jerusalem, 1970).
BaER, I. G. (1925) Some Cesioda described by Beddard. t911-1920. Ann. Trop. Med. Parasit. 19, 1-22.
(1959) Helminthes parasites. Exploration des Pares Nationaux du Congo Belge, Mission Baer-Gerber (1958). (Inslitut des Pares Nalionaux du Congo Belge :Bruxelles.).
BLDuARD, F. E. (1912) Contributions to the anatomy and swtematic arrangement of Cestoidea. V. On a new genus (Daspurotaenia) from the Tasmanian devil (Dasyurns ursuияs), the type of a new family. Proc. Zool. Soc. l.ond. 1912, 677-695.
(1915) Connributions to the anatomy and systematic arrangement of Cestoidea. XVI. On certain points in the anatomy of the genus Amabilia and Dasywotaenia. lhid. 1915, 175-191.

Bryrkubcik, I. (1978) Heminth parasites of Australian marsupials. In Proceedings of Course No. 36 for veterinarian-trauna. Post-graduate commitee in Veterinary Science, University of Sydney, Sydney.)
(1982) Specificity and evolution of the anoploeephalate cestodes of marsupials. Mem. mus. nat. Hist. nat. nomvelle serie, Serie A., Zoologie 123, 103-109.

- Rickard, M. D. Grfiort, G. G. \& Mundm, B. L. (1975) Studies on Anoploturnia dasyuri Beddard, 1911 (Cestoda: Taenidae), a parasile of the Tasmanian devil: observations on the egg and metacestodc. Int.. Parasit. 5, 257-267.
 Hymenolepis nomu: the fine struture of the embryonic envelopes. Parasitology 82, 429-443.
freflinn, R. S. (1973) Ontogeny of cestodes and its bearing on their phylogeny and systematies. Advances in Purasitology 11, 481.557 (Academic Press: tondon).

Gregory, G. G., Mundmy, B. L., Beverideit, I. \& Rickard, M. D. (1974) Studies on Anoplotuenia clasyuri Beddard, 1911 (Cestodae, Taeniidac) a parasite of the Tasmanian devil: life cycle and epidemiology. Im. J. Purasit. 4, 187-191.

Ḱarstad, L., Shlo, L., Orech, G. \& Khalit, L. F. (1982) Pathology of Paradilepis scolecina (Cestoda: Dilepididae) in the white-necked cormorant (Phalacrocorax carbo.) J. Wildd. Dis. 18, 507-509.
Komitr. E. (1894) Der Klappenapparat in den Excretionsgefassen der Taenien. Z. Wiss Zool. 57, 385-401.
PENCE, D. B. (1967) The fine structure and histochemistry of the infective eggs of Dipylidium cuninum. J. Parasit. 53. 1041.1054.

Raise H, R. 1. (1981) Morphological and biological characteristics of Tuenia rileyi Loewen, 1929 (Cestoda: Tamiidae). Can. J. Zool. 59, 653-666.

- \& Ohbayashl, M. (1974) On some anoplocephaline cestodes from pikas, Ochotona spp. (Lagomorpha) in Nepal, with the description of Ectopocephalium abei gen. et. sp. n. J. Parasit. 60, 596-604.
Sanders, D. F. (1957) Redescription of some cestodes from marsupials. 1. Taeniidac. Ann. Trop. Med. Parasit. 51, 317-329.
Verster, A. (1967) Redescription of Taenia solium L.innaeus, 1758 and Tuenia saginata Goeze, 1782. Z. Parasit. 29, 313-328.
Wardle, R. A. \& MeLeod, J. A. (1952) The Zoology of Tapeworms. (University of Minnesota Press: Minneapolis.)
Yanaguti, S. (1959) Systema Helminthum. 11. The Cestodes, of Vertebrates. (Interscience Publishers: New York.)

[^0]: * Duvisom of Vefermary beiences, Sombh Abshatian Department or Agriculfure e/o Itrsifut of Medical ind Veterinary Science, Ironte Robad, Aifelatide, Soutit Mastralia.

[^1]: 1-ig 1 11. Dasyumbenia robusta Beddard. 1. Scolex with rostellum relracted; 2-7. rostellar hooks; 2, 3, latge or anterior rosteltar hooks, lateral siew; 4, large rostellar hook, radial vjew; 5, 6, small or posterior rostellar hooks, lateral vicu; 7 , small rostellar hook, radial view; 8, mature proglonis; 9 , cgg; 10, female genitalia; 11, gravid proglotis. Scale linex: fig. 1, 1.0 mm ; figs $2-8,11,10,0.1 \mathrm{~mm}$; fig. 9, 0.1 mm . g-guard; h-handle; 1-tip.

[^2]:
 vien; is, small tostellar hook, opical view; 19, cieres sace and distal vagina; 20 , manure proglotis: 21 , female genialia;
 10 mat e-ghard; li-handle; 1-lip.

